How much exercise do we need?

bstract
How much exercise does one need? It is generally accepted that physical activity increases the chance of losing weight. However, an
ffficial recommended daily amount of physical activity began only 3 years ago. The amount is still debated, but current public health recommendations for physical activity are 30 minutues of moderate- $\mathbf{\text { intensity }}$ active Thity anount is still debated, but tourrent public health here are certain health benefits that come with that level, some people may need more exercise or caloric restriction to control weight. For example, 75 minutes of brisk walking is said to be effective in long-term weight loss for someone who is on a diet. Moreover, in addition to
nerobic exercise, people should engage in resistance training and flexibility exercises at least twice a week. This will maintain the lean body mass and improve muscular strength and endurance. By practicing regular physical activities one can promote the quality of life.

ntroduction

Most of us know that exerise is good because there have been many studies done over the years that support this statement (1). They show at when a person exercises consistently, their health is improved as the heart and lungs become more e e.

Planned or structured physical activity is exercise (3). Exercise can also be defined as repetitive body movements which help improve or
maintain any of the components of physical fitiness (3). The basic components of physical fitess are cardio-respiratory endurance (aerobic fitness), muscular strength, muscular endurance and flexibility (3). Long runs and swims improve cardio-respiratory endurance, which is the
 huscle to exert force in a short period of time and it can be increased through weight-ififing exercises. Muscular endurance is the abiily of muscles so sustain repeated contractions or to c
muscles through their full range of motion (3).
There are different intensities of exercises: light, moderate-intense and vigorous-intense (3). Light physical is any activity that burns <3.5. calories per minute. Moderate physical activity refers to a level that increases breathing and heart rate. Any activity that burns 3.5 to 7 .
 creased substantially. Any activity that burns more than 7 kcal min is considered vigorous-intense (3). My hypothesis is that an average uman needs around 30 minutes of vigorous physical activity per day in order to maintain their body weigh.

метнодоlogy

In this research paper, I I gathered information from different peer-reviewed articles, nutrition journals, government websites like Centers for
Disease Control and P Prevention ((DCC), and reputable organization websites in the field of health such as American Heart Association and Results

Another way of observing physiaal activity intensity is to determine whether a person's pulse or heart rate is within the target zone during physical activity. A person's target heart rate for moderat--intense physical activity should be 50 to 70% of his or her maximum heart ral
For vigorous-intense physical activity, target heart rate is 7 to 85% of maximum. This maximum is based on age. To essimate your or vigorous-intense physical activity, target heart rate is 70 to 85% of maximum. This maximum is based on age. To estimate your
naximum heart rate, subtract your age from 220 . For example, for a 20 -year-old, the estimate would be $220-20$ years $=200$ beats per ninute (bpm). The 50% and $70 \% \%$ levels would be:
50% level. $200 \times 0.0 .5=100 \mathrm{bpm}$, and 70% level: $200 \times 0.70=140 \mathrm{bpm}$
oor vigorous-intense physical activity, the formula changes from " 50 and 70% " to " 70 and 85% ".

Table 2. BMI and physical activity level (PAL) for normal-weight and overweig

	Normal-weigh ${ }^{3}$		Overweight or obese	
	BMI	PAL ${ }^{2}$	вмI	PAL^{2}
Men	$\mathrm{kg} / \mathrm{m}^{\text {I }}$		${\mathrm{kg} / \mathrm{m}^{\text {I }} \text { I }}^{\text {d }}$	
19-30 y	22.02	1.74	29.62	1.85
$31-50 \mathrm{y}$	22.55	1.81	30.82	1.85
51-70 y	22.95	1.63	29.55	1.72
Women				
19-30 y	21.42	1.80	29.82	1.77
31-50 y	21.64	1.83	31.91	1.79
51-70 y	22.18	1.70	30.37	1.59

[^0]table 2 shows that excluding the $51-70$ y ad a PAL difference of 0.11 , there is almost no
difference between the normal-weight or overweigh diffrsoncon and theirir PAL. This proves that on the average persons and their PAL. his proves that on the average,
people with different body masses exercise about the
same amount to mainain teeir weight To reduce weight, people must exercise more than the

Table 1. General Physical Activities Defined by Level of Intensity

Moderate activity 3.0 to 6.0 METs* $(3.5$ to $7 \mathrm{kcal} / \mathrm{min})$	Vigorous activity Greater than 6.0 METs (more than $7 \mathrm{kcal} / \mathrm{min}$)
Walking at a moderate or brisk pace of 3 to 4.5 mph on a level surface inside or outside	Racewalking and aerobic walking-5 mph or faster (Jogging or running)
Bicycling 5 to 9 mph , level terrain, or with few hills	Bicycling more than 10 mph or bicycling on steep uphill terrain
$\begin{array}{\|l} \hline \begin{array}{l} \text { Calisthenics-light } \\ \text { Yoga } \\ \text { Gymnastics } \end{array} \\ \hline 0 \mid \end{array}$	Calisthenics-push-ups, pull-ups Karate, judo, tae kwon do, jujitsu
Ballroom dancing Modern dancing	Professional ballroom dancingenergetically
Golf, wheeling or carrying clubs	
Softball-fast pitch or slow pitch Basketball-shooting baskets Coaching children's or adults' sports Volleyball - competitive	Most competitive sports Football game Basketball gam Soccer Beach volleyball - on sand court
Playing Frisbee Juggling Badminton Fencing Tennis-doubles	Handball-general or team Racquetball Squash Tennis-singles
Downhill skiing-with light effort Ice skating at a leisurely pace (9 mph or less)	Downhill skiing-racing or with vigorous effort Ice skating at fast pace (10 mph or more
Swimming-recreational Diving-springboard or platform Aquatic aerobics	Swimming-steady paced laps Synchronized swimming Water polo
Canoeing or rowing a boat at less than 4 mph	Canoeing or rowing - 4 or more mph
\sim Work that require extended periods of pushing or pulling objects weighing less than 75 lbs , standing while lifting objects weighing less than 50 lbs , or while walking	\sim Work that require extensive periods of pushing or pulling objects weighing 75 lbs or more, standing while lifting heavy objects of 50 lbs or more, walking while carrying heavy objects of 25 lbs or more

MET is a wit than stimates the lean

Abstract

Figure 1. The relationship between eating, exercise and weight mamtunance (1). The cal values on the horizontal dyertical axes represesnt a range of valu high. The diagonal line represents energy balance, which is where energy inake equals energy expenditure and weight s stable. When the energy intake and energy expenditure re not equal , it creates positive energy balance and leads to weight gain, The triangle in the lowerg left of the graph uggests that weight gain is likely ar low levels of daily suggests that weight gain is likely at low levels of daily exercise because of dysregulation. The triangle at the upper exercise because of dystegulation. The triangle at the up ight part of the graph ropresent the people who lose weight through vigoorous exercise. eight through vigorous exercise.

Figure 2 summarizes the results of several large primary prevention studies on the relation between physical activity or fitness and cardiovascular
disease risk (1). There is a decline in disease risk that is associated with higher levels of activity or fitiness, which indicates that ther is a large Higure summarizes the results of several arge primary prevention studies on the relation beiween physical activity or finess and cardiovascu difference in risk between the least active and those who are only modestly more active. Collectively, these data suggest that small changes in
activity or fitness of inactive people mightreduce the risk of disease (1).

The main study that I focused on is the study done by five scientists who were selected by the CDC and the ACSM. This committee of five also
chose 15 other experts in issues related to the health implications of physical activity from other organizations and federal asencies. The panel of experts then reviewed significant physiological, epidemiologic, and clinical evidence, including orimary research articlers and recent review
 types and amounts of physical activity was the primary focus. Even after the panel developed a consensuss statementst it was furtrener reviexed and
revised for month before the CDC and ACSM formally approved it. "Every US adult should accumulate 30 minutes or more of moderaterevised for months before the CDC and ACSM formally approved it. "Every US adult should accumulate
intensity physical activity on most, preferably all, days of the week" was the conclusion of this study (6).
discussion
Determining the minimal dose of exercise is a difficult process. At present, we can rely on the consensus amount of 30 minutes per day of moderate physical activity. Some benefits of regular exercise are it improves the sense of well-being, because we will feel more energetic and
less stressed (7). A better quality of sleep occurs and the ability to cope with stress improves (7). Other benefits of exercising are weight loss, less stressed ($)$. A better quality of sleep occurs and the abiity to cope with stress improves (7 . Other benefits of exercising are weight loss, recommendation is good, there are additional health and weight benefits from more and higher-intensity activities.

references

1. Steven N Blair, Michael J LaMonte and Milton Z Nichaman. "The Evolution of Physical Activity Recommendations: How much is enough" A. Robert W Joffery, Rena R Wing, Nancy ESherwook, and Deborah F T Tate "Physical Activity and Weight Loss: Does prescribing higher physical activity goals improve outcome?" American Journal of Clinical Nutrition 78 (2003): :684-689.

2. Pauline Koi-Banerjee, Nain-Feng Chu, Donna Spiegelman, Bernard Rosner, Graham Colditz, Walter Willet, and Eric Rimm. "Predicators of
Waist Gain." American Journal of Clinical Nutrition 78 (2003): 719-727. 6. Pate $R \mathrm{RR}$, Pratt M, Blair SN , et al ". Physical activity and public health: a
and the
and the American Collegc of Sports Medicine." JAMA 273 (1995): 402 -407.
7 - American Heart sssociation. 23 March 2006. 2 xxercise and
-Atiness. 23 March 2006
3. American Heart Association 23 March h 2006 . Exercisis and Fit

[^0]:

